[徵求] 獨特性

看板Wanted (汪踢 徵求)作者時間7月前 (2025/05/10 12:29), 7月前編輯推噓0(000)
留言0則, 0人參與, 最新討論串1/1
又是一如既往的例行事項,不知道今天的我可不可以解出這樣的一題 空間の点(0, 0, 1)を通り(1, -1, 0)を方向ベクトルとする直線をlとし, 点(1, 0, 3) を通り(0, 1, -2)を方向ベクトルとする直線をmとする (1)Pをl上の点とし, Qをm上の点とする. また直線PQは直線lと直線mに垂直であるとす る. このときPとQの座標, および線分PQの長さ求をめよ (2)l上に2点A=(t, -t, 1), B=(2+t+sint, -2-t-sint, 1)があり, m上に2点C=(1, t, 3-2t), D=(1, 2+t+cost, -1-2t-2cost)があるとする. ただし, tは実数とする. 四面体 ABCDの体積をV(t)とする. V(0)を求めよ 這裡是需要新加坡工作機會的男人,有人要聊一下? -- -- ※ 發信站: 批踢踢實業坊(ptt.cc), 來自: 36.231.8.106 (臺灣) ※ 文章網址: https://www.ptt.cc/bbs/Wanted/M.1746851391.A.EE7.html ※ 編輯: kittor (36.231.8.106 臺灣), 05/10/2025 12:41:59
文章代碼(AID): #1e7jO_xd (Wanted)
文章代碼(AID): #1e7jO_xd (Wanted)